热冲洗增强再生的变压吸附工艺用于焦炉煤气制氢Pressure swing adsorption process with enhanced regeneration by hot purging for hydrogen production from coke oven gas
徐俊杰,武文玲,郭伟东,张东辉,李文彬,唐忠利
摘要(Abstract):
为提高变压吸附法制氢工艺性能,提出了一种热冲洗增强再生的八塔二十四步变压吸附工艺。该工艺采用活性炭和5A分子筛作为吸附剂,基于原料气中各组分在吸附剂上的吸附数据,利用商业软件Aspen Adsorption进行了模拟研究。通过数值模拟分析吸附塔内部温度、压力、组分等状态参数对工艺性能的影响,确定适宜的操作条件。研究结果表明,缓冲罐的引入显著提高了氢气的回收率和生产能力;热冲洗则增强了吸附塔的再生效率,从而提升了氢气产品的纯度,最佳冲洗气温度为333 K。与传统工艺相比,热冲洗增强再生制氢工艺将纯度由98.781 6%提升至99.345 6%、回收率由85.36%提升至86.01%,生产能力和能耗分别为2.05 mol·(kg_(ads)·h)~(-1)和16.80 kJ·mol~(-1)。
关键词(KeyWords): 变压吸附;焦炉煤气;制氢;数值模拟;热冲洗再生
基金项目(Foundation): 国家重点研发计划(2019YFB1505000)
作者(Author): 徐俊杰,武文玲,郭伟东,张东辉,李文彬,唐忠利
参考文献(References):
- [1]ZHANG C,SHEN Y H,ZHANG D H,et al.Vacuum pressure swing adsorption for producing fuel cell grade hydrogen from IGCC[J].Energy,2022,257:124715.
- [2]ZAINAL B S,KER P J,MOHAMED H,et al.Recent advancement and assessment of green hydrogen production technologies[J].Renewable and Sustainable Energy Reviews,2024,189:113941.
- [3]MORAL G,ORTIZ-IMEDIO R,ORTIZ A,et al.Hydrogen recovery from coke oven gas.comparative analysis of technical alternatives[J].Industrial&Engineering Chemistry Research,2022,61(18):6106-6124.
- [4]DU Z M,LIU C M,ZHAI J X,et al.A review of hydrogen purification technologies for fuel cell vehicles[J].Catalysts,2021,11(3):393.
- [5]RAZZAQ R,LI C S,ZHANG S J.Coke oven gas:Availability,properties,purification,and utilization in China[J].Fuel,2013,113:287-299.
- [6]WANG J,CHEN X,REN T S,et al.Coke oven gases processing by vacuum swing adsorption:Carbon capture and methane recovery[J].Separation and Purification Technology,2025,354:128593.
- [7]WANG J,CHEN X,DU T,et al.Hydrogen production from low pressure coke oven gas by vacuum pressure swing adsorption[J].Chemical Engineering Journal,2023,472:144920.
- [8]WANG J,CHEN X,LIU L Y,et al.Vacuum pressure swing adsorption intensification by machine learning:Hydrogen production from coke oven gas[J].International Journal of Hydrogen Energy,2024,69:837-854.
- [9]SHARMA I,FRIEDRICH D,GOLDEN T,et al.Monolithic adsorbent-based rapid-cycle vacuum pressure swing adsorption process for carbon capture from small-scale steam methane reforming[J].Industrial&Engineering Chemistry Research,2020,59(15):7109-7120.
- [10]ARGYRIS P A,WRIGHT A,QAZVINI O T,et al.Dynamic behaviour of integrated chemical looping process with pressure swing adsorption in small scale on-site H_2 and pure CO_2 production[J].Chemical Engineering Journal,2022,428:132606.
- [11]DELGADO J A,áGUEDA V I,UGUINA M A,et al.Adsorption and diffusion of H_2,CO,CH_4,and CO_2 in BPL activated carbon and13X zeolite:Evaluation of performance in pressure swing adsorption hydrogen purification by simulation[J].Industrial&Engineering Chemistry Research,2014,53(40):15414-15426.
- [12]PARK Y,JU Y,PARK D,et al.Adsorption equilibria and kinetics of six pure gases on pelletized zeolite 13X up to 1.0 MPa:CO_2,CO,N_2,CH_4,Ar and H_2[J].Chemical Engineering Journal,2016,292:348-365.
- [13]PARK Y,KANG J H,MOON D K,et al.Parallel and series multi-bed pressure swing adsorption processes for H_2 recovery from a lean hydrogen mixture[J].Chemical Engineering Journal,2021,408:127299.
- [14]DIVEKAR S,ARYA A,HANIF A,et al.Recovery of hydrogen and carbon dioxide from hydrogen PSA tail gas by vacuum swing adsorption[J].Separation and Purification Technology,2021,254:117113.
- [15]ABD A A,SEONG L K,OTHMAN M R.Optimized hydrogen purification for fuel cell quality from quinary coke oven gas via layered pressure swing adsorption under non-isothermal conditions[J].Chemical Engineering Research and Design,2023,200:753-775.
- [16]ZHANG N,BéNARD P,CHAHINE R,et al.Optimization of pressure swing adsorption for hydrogen purification based on Box-Behnken design method[J].International Journal of Hydrogen Energy,2021,46(7):5403-5417.
- [17]YANG J,LEE C H.Adsorption dynamics of a layered bed PSA for H_2 recovery from coke oven gas[J].AIChE Journal,1998,44(6):1325-1334.
- [18]YU X X,SHEN Y H,GUAN Z B,et al.Multi-objective optimization of ANN-based PSA model for hydrogen purification from steammethane reforming gas[J].International Journal of Hydrogen Energy,2021,46(21):11740-11755.
- [19]WU W L,CHEN S A,NIU Z Y,et al.A high-productivity PSA process configuration for H_2 purification[J].Fuel,2024,356:129566.
- [20]REGUFE M J,TAMAJON J,RIBEIRO A M,et al.Syngas purification by porous amino-functionalized titanium terephthalate MIL-125[J].Energy&Fuels,2015,29(7):4654-4664.
- [21]WANG Z G,SHEN Y H,ZHANG D H,et al.A comparative study of multi-objective optimization with ANN-based VPSA model for CO_2capture from dry flue gas[J].Journal of Environmental Chemical Engineering,2022,10(3):108031.
- [22]SUN W N,SHEN Y H,ZHANG D H,et al.A systematic simulation and proposed optimization of the pressure swing adsorption process for N_2/CH_4 separation under external disturbances[J].Industrial&Engineering Chemistry Research,2015,54(30):7489-7501.
- [23]DE LEóN C M,RíOS C,BREY J J.Cost of green hydrogen:Limitations of production from a stand-alone photovoltaic system[J].International Journal of Hydrogen Energy,2023,48(32):11885-11898.
- [24]MOON D K,KIM Y H,AHN H,et al.Pressure swing adsorption process for recovering H_2 from the effluent gas of a melting incinerator[J].Industrial&Engineering Chemistry Research,2014,53(40):15447-15455.
- [25]AHN S,YOU Y W,LEE D G,et al.Layered two-and four-bed PSA processes for H_2 recovery from coal gas[J].Chemical Engineering Science,2012,68(1):413-423.
- [26]LI C L,YANG T Q,LUO H,et al.Multi-objective optimization of breakthrough times for hydrogen purification through layered bed pressure swing adsorption based on genetic algorithm and artificial neural network model[J].International Journal of Hydrogen Energy,2024,52:390-405.
- [27]SHI W R,YANG H W,SHEN Y H,et al.Two-stage PSA/VS A to produce H_2 with CO_2 capture via steam methane reforming(SMR)[J].International Journal of Hydrogen Energy,2018,43(41):19057-19074.
- [28]LIU B,YU X X,SHI W R,et al.Two-stage VSA/PSA for capturing carbon dioxide(CO_2)and producing hydrogen(H_2)from steammethane reforming gas[J].International Journal of Hydrogen Energy,2020,45(46):24870-24882.