可溶性标签辅助的连续流高效绿色合成Heterophyllin BHighly efficient green synthesis of Heterophyllin B assisted by a soluble tag under continuous flow
夏超,颜阳丽,黄玉龙,苏贤斌
摘要(Abstract):
针对传统环肽合成过程中存在的有毒溶剂(如二甲基甲酰胺(DMF)和二氯甲烷(DCM))使用、脱保护试剂(如哌啶)受控、环化效率低和对特定氨基酸(如Cys、Lys)依赖等问题,文中提出了一种绿色、高效的环肽合成策略。该策略基于新型可溶性硅基疏水标签(双(4-((三异丙基硅烷基)氧基)苯基)甲基)肼(BTPH),结合连续流微反应技术,构建包含偶联、脱保护(四氢吡咯替代哌啶)及洗涤萃取三大模块的集成化系统,并采用低毒性乙酸乙酯(EA)替代DMF等传统有害溶剂。结果表明,该策略可高效合成线性Heterophyllin B肽酰肼,粗产物纯度>90%。此外,通过原位生成的酰基叠氮中间体在温和条件下完成环化,环化转化率较传统方法提升>30%,原子经济性提升,整体合成成本降低约60%。研究结论为绿色连续流合成天然环肽提供了可行路径,对复杂多肽的模块化制备具有重要参考价值。
关键词(KeyWords): 可溶性标签;Heterophyllin B;连续流动;微通道反应器
基金项目(Foundation): 江苏高校优势学科建设工程资助项目(PAPD)
作者(Author): 夏超,颜阳丽,黄玉龙,苏贤斌
参考文献(References):
- [1]LIN KING J V, EMRICK J J, KELLY M J S,et al. A cell-penetrating scorpion toxin enables mode-specific modulation of TRPA1 and pain[J].Cell, 2019, 178(6):1362-1374. e16.
- [2]MUTTENTHALER M, KING G F, ADAMS D J,et al. Trends in peptide drug discovery[J].Nature Reviews Drug Discovery, 2021,20(4):309-325.
- [3]SHI L Y, ZHANG X Y, MAO L M,et al. Anti-neoplastic effect of heterophyllin B on ovarian cancer via the regulation of NRF2/HO-1in vitro and in vivo[J].Tissue and Cell, 2024, 91:102566.
- [4]CHEN C, WANG J L, CHENG M Q,et al. Muribaculum intestinale-derived 3-hydroxybutyric acid from Heterophyllin B attenuated pulmonary fibrosis through IDO1-mediated ferroptosis[J].Pharmacological Research, 2025, 212:107587.
- [5]WEI Y H, YIN L, ZHANG J Y,et al. Heterophyllin B inhibits the malignant phenotypes of gastric cancer cells via CXCR4[J].Human Cell, 2023, 36(2):676-688.
- [6]MERRIFIELD R B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide[J].Journal of the American Chemical Society, 1963, 85(14):2149-2154.
- [7]VIGNEAUD V D, RESSLER C, SWAN C J M,et al. The synthesis of an octapeptide amide with the hormonal activity of oxytocin[J].Journal of the American Chemical Society, 1953, 75(19):4879-4880.
- [8]MERLINO F, TOMASSI S, YOUSIF A M,et al. Boosting Fmoc solid-phase peptide synthesis by ultrasonication[J].Organic Letters,2019, 21(16):6378-6382.
- [9]MOLAKASEEMA V, SELVARAJ A, CHEN H T,et al. Simple and rapid synthesis of branched peptides through microwave-assisted onbead ligation[J].The Journal of Organic Chemistry, 2022, 87(1):1-9.
- [10]PRAT D, WELLS A, HAYLER J,et al. CHEM21 selection guide of classical-and less classical-solvents[J].Green Chemistry,2016, 18(1):288-296.
- [11]MARTIN V, JADHAV S, EGELUND P H G,et al. Harnessing polarity and viscosity to identify green binary solvent mixtures as viable alternatives to DMF in solid-phase peptide synthesis[J].Green Chemistry, 2021, 23(9):3295-3311.
- [12]MARTELLI G, CANTELMI P, TOLOMELLI A,et al. Steps towards sustainable solid phase peptide synthesis:Use and recovery ofNoctyl pyrrolidone[J].Green Chemistry, 2021, 23(11):4095-4106.
- [13]ZOMPRA A A, GALANIS A S, WERBITZKY O,et al. Manufacturing peptides as active pharmaceutical ingredients[J].Future Medicinal Chemistry, 2009, 1(2):361-377.
- [14]SHARMA A, KUMAR A, DE LA TORRE B G,et al. Liquid-phase peptide synthesis(LPPS):A third wave for the preparation of peptides[J].Chemical Reviews, 2022, 122(16):13516-13546.
- [15]FANG G M, LI Y M, SHEN F,et al. Protein chemical synthesis by ligation of peptide hydrazides[J].Angewandte Chemie International Edition, 2011, 50(33):7645-7649.
- [16]ZHENG J S, TANG S, GUO Y,et al. Synthesis of cyclic peptides and cyclic proteins via ligation of peptide hydrazides[J].ChemBioChem, 2012, 13(4):542-546.
- [17]ZHENG J S, TANG S, HUANG Y C,et al. Development of new thioester equivalents for protein chemical synthesis[J].Accounts of Chemical Research, 2013, 46(11):2475-2484.
- [18]ZHENG J S, TANG S, QI Y K,et al. Chemical synthesis of proteins using peptide hydrazides as thioester surrogates[J].Nature Protocols, 2013, 8(12):2483-2495.
- [19]LI J, ZHU Y, LIU B,et al. An atom-economic inverse solid-phase peptide synthesis using Bn or BcM esters of amino acids[J].Organic Letters, 2021, 23(19):7571-7574.
- [20]LIN S M, MO Z Y, WANG P,et al. Oxidation and phenolysis of peptide/protein C-terminal hydrazides afford salicylaldehyde ester surrogates for chemical protein synthesis[J].Journal of the American Chemical Society, 2023, 145(30):16843-16851.
- [21]DING Y Y, LAMBDEN E, PEATE J,et al. Rapid peptide cyclization inspired by the modular logic of nonribosomal peptide synthetases[J].Journal of the American Chemical Society, 2024, 146(24):16787-16801.
- [22]KEIJER T, BAKKER V, SLOOTWEG J C. Circular chemistry to enable a circular economy[J].Nature Chemistry, 2019, 11(3):190-195.
- [23]刘豪,刘冬梅,孙浩田,等.利用脂溶性硅基载体连续流动液相合成维洛斯肽[J].高等学校化学学报,2024, 45(7):20240024.LIU H, LIU D M, SUN H T,et al. Continuous flow liquid-phase vialox peptide synthesis using hydrophobic silyl tag[J].Chemical Journal of Chinese Universities, 2024, 45(7):20240024.
- [24]彭伟,程蓉,刘豪,等.可溶性疏水性标签辅助的高效连续流液相多肽合成[J].有机化学,2024, 44(9):2876-2888.PENG W, CHENG R, LIU H,et al. Highly efficient continuous flow liquid-phase peptide synthesis using a soluble hydrophobic tag[J].Chinese Journal of Organic Chemistry, 2024, 44(9):2876-2888.
- [25]WILLIAMS J D, KAPPE C O. Recent advances toward sustainable flow photochemistry[J].Current Opinion in Green and Sustainable Chemistry, 2020, 25:100351.
- [26]HARTRAMPF N, SAEBI A, POSKUS M,et al. Synthesis of proteins by automated flow chemistry[J].Science, 2020, 368(6494):980-987.
- [27]OTAKE Y, ADACHI K, YAMASHITA Y,et al. A liquid-phase continuous-flow peptide synthesizer for preparing C-terminal free peptides[J].Reaction Chemistry&Engineering, 2023, 8(4):863-870.
- [28]FUSE S, MIFUNE Y, NAKAMURA H,et al. Total synthesis of feglymycin based on a linear/convergent hybrid approach using microflow amide bond formation[J].Nature Communications, 2016, 7:13491.
- [29]KEKESSIE I, WEGNER K, MARTINEZ I,et al. Process mass intensity(PMI):A holistic analysis of current peptide manufacturing processes informs sustainability in peptide synthesis[J].The Journal of Organic Chemistry, 2024, 89(7):4261-4282.
- [30]SABATINI M T, BOULTON L T, SNEDDON H F,et al. A green chemistry perspective on catalytic amide bond formation[J].Nature Catalysis, 2019, 2(1):10-17.
- [31]MADABHUSHI S R, GAVIN J, XU S,et al. Quantitative assessment of environmental impact of biologics manufacturing using process mass intensity analysis[J].Biotechnology Progress, 2018, 34(6):1566-1573.