有机液体脱氢与SOFC耦合系统的热力学分析Thermodynamic analysis on a coupled system of organic liquid dehydrogenation and SOFC
邱美兰,康丽霞,刘永忠
摘要(Abstract):
以氢气为燃料的固体氧化物燃料电池(SOFC)作为一种高效、环保的能源转换技术,近年来在交通运输领域展现出巨大的潜力和优势。然而,要实现其在交通运输领域的广泛应用,还需克服氢气的储运、加氢站等配套基础设施不完善等困难。采用有机液体储氢技术(LOHC)有望应对这些挑战,且当LOHC的脱氢过程在移动源中进行时,所需的热量还可由SOFC产生高温废气进行供给。基于此,文中提出了LOHC脱氢单元与SOFC的耦合系统(LOHC-SOFC),旨在满足SOFC氢气燃料需求的同时使得SOFC产生的废热能够满足LOHC脱氢反应的热需求,以达到提升系统能量利用效率的目标。为此,利用Aspen Plus软件构建了恒定SOFC输出功率下LOHC-SOFC系统热力学仿真和计算模型,并进行了详细的能量分析和火用分析。结果表明,在设计条件下,SOFC发电效率、系统发电效率和系统火用效率分别为46.06%、44.79%和47.59%;系统的火用损失为4.034 kW,主要来自空气预热器、SOFC以及后燃烧室。此外,文中还探究了储氢载体类型、SOFC运行温度和运行压力等主要参数对系统输出参数和热力学性能指标的影响规律,为LOHC-SOFC系统设计和操作参数的确定提供了指导和建议。
关键词(KeyWords): 过程建模;热集成;热力学分析;有机液体储氢;固体氧化物燃料电池
基金项目(Foundation): 国家自然科学基金(22378323);; 陕西省共性技术研发平台项目(2025ZY1-GXJS-03);; 宁德时代创新实验室开放基金资助(21C-OP-202305)
作者(Author): 邱美兰,康丽霞,刘永忠
参考文献(References):
- [1]赵俊杰,涂正凯.高温车用燃料电池的发展及现状综述[J].化工进展,2020, 39(5):1722-1733.ZHAO J J, TU Z K. Review on the development and present situation of high temperature vehicle fuel cell[J].Chemical Industry and Engineering Progress, 2020, 39(5):1722-1733.
- [2]SINGHAL S C. Solid oxide fuel cells for power generation[J].WIREs Energy and Environment, 2014, 3(2):179-194.
- [3]AMINUDIN M A, KAMARUDIN S K, LIM B H,et al. An overview:Current progress on hydrogen fuel cell vehicles[J].International Journal of Hydrogen Energy, 2023, 48(11):4371-4388.
- [4]ALASWAD A, BAROUTAJI A, ACHOUR H,et al. Developments in fuel cell technologies in the transport sector[J].International Journal of Hydrogen Energy, 2016, 41(37):16499-16508.
- [5]HALDER P, BABAIE M, SALEK F,et al. Performance, emissions and economic analyses of hydrogen fuel cell vehicles[J].Renewable and Sustainable Energy Reviews, 2024, 199:114543.
- [6]周一鸣,齐随涛,周宇亮,等.多环芳烃类液体有机氢载体储放氢技术研究进展[J].化工进展,2023, 42(2):1000-1007.ZHOU Y M, QI S T, ZHOU Y L,et al. Research progress in the hydrogenation and dehydrogenation technology of polycyclic aromatic hydrocarbon liquid organic hydrogen carriers[J].Chemical Industry and Engineering Progress, 2023, 42(2):1000-1007.
- [7]CHU C Y, WU K, LUO B B,et al. Hydrogen storage by liquid organic hydrogen carriers:Catalyst, renewable carrier, and technologyA review[J].Carbon Resources Conversion, 2023, 6(4):334-351.
- [8]ZHOU M J, MIAO Y L, GU Y W,et al. Recent advances in reversible liquid organic hydrogen carrier systems:From hydrogen carriers to catalysts[J].Advanced Materials, 2024, 36(37):2311355.
- [9]刘若璐,汤海波,何翡翡,等.液态有机储氢技术研究现状与展望[J].化工进展,2024, 43(4):1731-1741.LIU R L, TANG H B, HE F F,et al. Recent research and prospect of liquid organic hydrogen carries technology[J].Chemical Industry and Engineering Progress, 2024, 43(4):1731-1741.
- [10]SPATOLISANO E, RESTELLI F, MATICHECCHIA A,et al. Assessing opportunities and weaknesses of green hydrogen transport via LOHC through a detailed techno-economic analysis[J].International Journal of Hydrogen Energy, 2024, 52:703-717.
- [11]M??LLER K, THIELE S, WASSERSCHEID P. Evaluations of concepts for the integration of fuel cells in liquid organic hydrogen carrier systems[J].Energy&Fuels, 2019, 33(10):10324-10330.
- [12]PREUSTER P, FANG Q P, PETERS R,et al. Solid oxide fuel cell operating on liquid organic hydrogen carrier-based hydrogen-making full use of heat integration potentials[J].International Journal of Hydrogen Energy, 2018, 43(3):1758-1768.
- [13]LIM I S, JEONG Y, KWAK Y,et al. Maximizing clean hydrogen release from perhydro-benzyltoluene:Energy-efficient scale-up strategies and techno-economic analyses[J].Chemical Engineering Journal, 2023, 478:147296.
- [14]GAMBINI M, GUARNACCIA F, MANNO M,et al. Feasibility study of LOHC-SOFC systems under dynamic behavior for cargo ships compared to ammonia alternatives[J].International Journal of Hydrogen Energy, 2024, 81:81-92.
- [15]BRIGLJEVIC′B, LEE B, DICKSON R,et al. Concept for temperature-cascade hydrogen release from organic liquid carriers coupled with SOFC power generation[J].Cell Reports Physical Science, 2020, 1(3):100032.
- [16]HUANG Y C, SI Y X, XIANG Y,et al. Integration of hydrogenation and dehydrogenation based on N-ethylcarbazole as a liquid organic hydrogen carrier[J].Industrial&Engineering Chemistry Research, 2023, 62(18):6953-6962.
- [17]范以薇,刘威,李盈盈,等.有机液体储氢中全氢化乙基咔唑催化脱氢研究进展[J].化工学报,2024, 75(4):1198-1208.FAN Y W, LIU W, LI Y Y,et al. Research progress on catalytic dehydrogenation of dodecahydro-N-ethylcarbazole as liquid organic hydrogen carrier[J].CIESC Journal, 2024, 75(4):1198-1208.
- [18]YAO J H, SU L J, GUO L P,et al. K-promoted Pt/meso-Al2O3catalysts for H2production from dehydrogenation of dodecahydro-N-ethylcarbazole[J].Chemical Engineering Science, 2025, 301:120764.
- [19]YANG X Y, ZHAO H B. Thermodynamic performance study of the SOFC-STIG distributed energy system fueled by LNG with CO2recovery[J].Energy, 2019, 186:115860.
- [20]HASELI Y, DINCER I, NATERER G F. Thermodynamic analysis of a combined gas turbine power system with a solid oxide fuel cell through exergy[J].Thermochimica Acta, 2008, 480(1/2):1-9.
- [21]ZENG R, GUO B X, ZHANG X F,et al. Study on thermodynamic performance of SOFC-CCHP system integrating ORC and doubleeffect ARC[J].Energy Conversion and Management, 2021, 242:114326.
- [22]ZHAO H B, LU R H, ZHANG T H. Thermodynamic and economic performance study of SOFC combined cycle system using biomass and LNG coupled with CO2recovery[J].Energy Conversion and Management, 2023, 280:116817.
- [23]FULLER E N, SCHETTLER P D, GIDDINGS J C. A new method for prediction of binary gas-phase diffusion coefficients[J].Industrial&Engineering Chemistry, 1966, 58(5):18-27.
- [24]AKKAYA A V. Electrochemical model for performance analysis of a tubular SOFC[J].International Journal of Energy Research,2007, 31(1):79-98.
- [25]ZHANG W, CROISET E, DOUGLAS P L,et al. Simulation of a tubular solid oxide fuel cell stack using AspenPlusTMunit operation models[J].Energy Conversion and Management, 2005, 46(2):181-196.
- [26]LEE K, KANG S, AHN K Y. Development of a highly efficient solid oxide fuel cell system[J].Applied Energy, 2017, 205:822-833.
- [27]LV J Y, WANG C Z, CHEN H,et al. Thermodynamic and economic analysis of a conceptual system combining sludge gasification,SOFC, supercritical CO2cycle, and organic Rankine cycle[J].Journal of Thermal Science, 2024, 33(4):1491-1508.