离子印迹改性木质素/石墨烯复合量子点的制备及性能Preparation and properties of ion imprinted modified lignin/graphene composite quantum dots
赵瑀杨,赵东洋,姚娜,丁海阳,李梅,李守海,许利娜
摘要(Abstract):
木质素作为具有巨大应用前景的生物质资源,提高木质素的利用率和挖掘木质素的潜在价值持续吸引着业界的关注与探索。传统木质素修饰的荧光碳点检测金属离子,检测结果具有“不可预测性”,这一特性对此类碳量子点的开发与应用造成一定程度的限制。离子印迹技术凭借其特异性离子识别机制,可使碳点“专一性”和“特异性”识别金属离子功能得到加强,为碳点检测金属离子领域提供新的研究思路。文中首先进行木质素的胺化改性,随后采用柠檬酸热解法制备出以Co~(2+)为模板离子的离子印迹改性木质素/石墨烯复合量子点(IIT/GQDs)。利用荧光光谱仪测得IIT/GQDs的最大激发波长和发射波长分别为318 nm和425 nm,利用透射电镜测得复合量子点的粒径平均分布在0.5~5 nm且呈准零维球形,以乙二胺四乙酸(EDTA)洗脱Co~(2+)后,可作为检测Co~(2+)的荧光探针,在10~500μmol·L~(-1)内,荧光强度(F_0/F)与Co~(2+)浓度呈线性关系,Stern-volmer线性回归方程可以表示为F_0/F=1.06+(3.18×10~(-4))C(Co~(2+)),相关性系数R2为0.98。此外,IIT/GQDs可以用于实际水样中的Co~(2+)检测,研究结论为碳点在环境监测领域提供了新的思路。
关键词(KeyWords): 离子印迹;木质素磺酸钠;石墨烯复合量子点;Co~(2+);荧光探针
基金项目(Foundation): 中国林业科学研究院中央级公益性科研院所基本科研业务费专项资助(CAFYBB2021QB005);; 国家自然科学基金(32001284)
作者(Author): 赵瑀杨,赵东洋,姚娜,丁海阳,李梅,李守海,许利娜
参考文献(References):
- [1]周巧巧,任勃,李有志,等.中国河湖水体重金属污染趋势及来源解析[J].环境化学,2020, 39(8):2044-2054.ZHOU Q Q, REN B, LI Y Z,et al. Trends and sources of dissolved heavy metal pollution in water of rivers and lakes in China[J].Environmental Chemistry, 2020, 39(8):2044-2054.
- [2]赵荣钦,吴微,姚双胜,等.“双碳”目标下的水资源节约集约利用:机理、路径与政策启示[J].水利发展研究,2025, 25(1):94-101.ZHAO R Q, WU W, YAO S S,et al. Conservation and intensive use of water resources under thedual carbon goal:Mechanism, path and policy[J].Water Resources Development Research, 2025, 25(1):94-101.
- [3]LI Y Z, ZHOU Q Q, REN B,et al. Trends and health risks of dissolved heavy metal pollution in global river and lake water from 1970//to 2017[M] DE VOOGT P. Reviews of Environmental Contamination and Toxicology Volume 251. Cham:Springer, 2019:1-24.
- [4]AZIZ K H A, MUSTAFA F S, OMER K M,et al. Heavy metal pollution in the aquatic environment:Efficient and low-cost removal approaches to eliminate their toxicity:A review[J].RSC Advances, 2023, 13(26):17595-17610.
- [5]AHMADIJOKANI F, MOLAVI H, PEYGHAMBARI A,et al. Efficient removal of heavy metal ions from aqueous media by unmodified and modified nanodiamonds[J].Journal of Environmental Management, 2022, 316:115214.
- [6]罗林.电化学方法在废水重金属去除中的作用效率与实践应用[J].皮革制作与环保科技,2024, 5(19):18-20.LUO L. Study on the efficiency and mechanism of removing heavy metals from wastewater by electrochemical method[J].Leather Manufacture and Environmental Technology, 2024, 5(19):18-20.
- [7]GOGOI N, BAROOAH M, MAJUMDAR G,et al. Carbon dots rooted agarose hydrogel hybrid platform for optical detection and separation of heavy metal ions[J].ACS Applied Materials&Interfaces, 2015, 7(5):3058-3067.
- [8]宋志敏,潘万伟,王小强,等.微波消解-电感耦合等离子体质谱法测定土壤中9种重金属元素[J].化学分析计量,2023,32(12):43-46.SONG Z M, PAN W W, WANG X Q,et al. Determination of 9 heavy metals in soil by ICP-MS with microwave digestion[J].Chemical Analysis and Meterage, 2023, 32(12):43-46.
- [9]周洁,王佳芷,黄林生,等.原子吸收光谱法测定武当山地区樱桃中重金属含量[J].食品工业,2018, 39(11):318-321.ZHOU J, WANG J Z, HUANG L S,et al. Determination of heavy metals content in Wudang cherry by atomic absorption spectrometry[J].The Food Industry, 2018, 39(11):318-321.
- [10]应丽艳,江海亮,周赛春,等.离子液体分散液液微萃取-高效液相色谱法同时检测水中镍、铜、汞[J].分析试验室,2017,36(1):56-59.YING L Y, JIANG H L, ZHOU S C,et al. Ionic liquid-dispersion liquid-liquid microextraction-high performance liquid chromatography for simultaneous detection of Ni2+, Cu2+and Hg2+in surface water[J].Chinese Journal of Analysis Laboratory, 2017, 36(1):56-59.
- [11]BAKER S N, BAKER G A. Luminescent carbon nanodots:Emergent nanolights[J].Angewandte Chemie International Edition,2010, 49(38):6726-6744.
- [12]LI X M, RUI M C, SONG J Z,et al. Carbon and graphene quantum dots for optoelectronic and energy devices:A review[J].Advanced Functional Materials, 2015, 25(31):4929-4947.
- [13]LIM S Y, SHEN W, GAO Z Q. Carbon quantum dots and their applications[J].Chemical Society Reviews, 2015, 44(1):362-381.
- [14]INDUMATHY J, PAL G K, PAL P,et al. Decreased baroreflex sensitivity is linked to sympathovagal imbalance, body fat mass and altered cardiometabolic profile in pre-obesity and obesity[J].Metabolism, 2015, 64(12):1704-1714.
- [15]ZHOU X, CAO Y F, ZHOU X J,et al. Nanosensors based on structural memory carbon nanodots for Ag+fluorescence determination[J].Nanomaterials, 2021, 11(10):2687.
- [16]FU J Q, CHEN L X, LI J H,et al. Current status and challenges of ion imprinting[J].Journal of Materials Chemistry A, 2015,3(26):13598-13627.
- [17]RAO T P, KALA R, DANIEL S. Metal ion-imprinted polymers-novel materials for selective recognition of inorganics[J].Analytica Chimica Acta, 2006, 578(2):105-116.
- [18]ANDA??M, MIREL S,??ENEL S,et al. Ion-imprinted beads for molecular recognition based mercury removal from human serum[J].International Journal of Biological Macromolecules, 2007, 40(2):159-166.
- [19]GE Y Y, LI Z L. Application of lignin and its derivatives in adsorption of heavy metal ions in water:A review[J].ACS Sustainable Chemistry&Engineering, 2018, 6(5):7181-7192.
- [20]SUPANCHAIYAMAT N, JETSRISUPARB K, KNIJNENBURG J T N,et al. Lignin materials for adsorption:Current trend, perspectives and opportunities[J].Bioresource Technology, 2019, 272:570-581.
- [21]周益同,张小丽,高源,等.曼尼希反应合成碱木质素胺基多元醇的研究[J].现代化工,2011, 31(增刊1):260-263.ZHOU Y T, ZHANG X L, GAO Y,et al. Synthesis research of alkali lignin aminated polyol with Mannich reaction[J].Modern Chemical Industry, 2011, 31(Suppl. 1):260-263.
- [22]XU L N, MAO W, HUANG J R,et al. Economical, green route to highly fluorescence intensity carbon materials based on ligninsulfonate/graphene quantum dots composites:Application as excellent fluorescent sensing platform for detection of Fe3+ions[J].Sensors and Actuators B:Chemical, 2016, 230:54-60.
- [23]TANG Y F, ZENG Y D, HU T,et al. Preparation of lignin sulfonate-based mesoporous materials for adsorbing malachite green from aqueous solution[J].Journal of Environmental Chemical Engineering, 2016, 4(3):2900-2910.
- [24]李科,聂小安,蒋剑春,等.二乙醇胺改性木质素磺酸钠及水泥助磨特性研究[J].四川化工,2016, 19(6):21-25.LI K, NIE X A, JIANG J C,et al. Synthesis research and grinding efficiency of diethanolamine sodium ligninsulfonate[J].Sichuan Chemical Industry, 2016, 19(6):21-25.