P掺杂与氧空位协同增强In2O3光催化还原CO2Phosphorus doping and oxygen vacancies synergistically enhanced In2O3 photocatalytic CO2 reduction
魏硕硕,孙浩,轧宗洋,陈浪,徐栋,王华
摘要(Abstract):
由于In_2O_3光催化CO_2还原反应的固有缺陷(如高光生载流子复合率、CO_2吸附/活化能力不足),其活性及产物选择性均较低,需通过结构/组分调控提升光催化CO_2还原性能。本研究采用水热-焙烧-气相磷化法成功制备了P掺杂和氧空位共改性的纳米花In_2O_3催化剂(xP-In_2O_3),通过控制磷化反应时间(x h)优化了P掺杂量和氧空位浓度,从而提高了光催化还原CO_2活性和产物选择性。在气固光催化反应体系,1.0P-In_2O_3的CO、CH_4产率达4.13μmol·g~(-1)·h~(-1)、2.54μmol·g~(-1)·h~(-1),分别是未改性In_2O_3的2.6倍和12.5倍,说明P掺杂和氧空位协同增强了In_2O_3还原CO_2活性并显著提高了深度还原产物CH_4的选择性。催化剂的光电性能、CO_2吸附性能测试表明P掺杂和氧空位共构建显著促进了In_2O_3光生电子-空穴对的分离与转移,增强了CO_2吸附和活化,从而提高了光催化还原CO2活性,促进了CH4生成。原位红外反应机理研究表明1.0P-In_2O_3表面CO_2转化为CH_4的反应路径为*CO_2→*CO→*CHO→*CH_3O→CH_4。研究结论为构建高活性和高CH_4选择性In_2O_3基催化剂提供了一种有效策略。
关键词(KeyWords): P掺杂;氧空位构建;光催化CO_2还原;In_2O_3
基金项目(Foundation): 国家自然科学基金(22178266)
作者(Author): 魏硕硕,孙浩,轧宗洋,陈浪,徐栋,王华
参考文献(References):
- [1]HAJRA S, SAHU M, PADHAN A M,et al. A green metal-organic framework-cyclodextrin MOF:A novel multifunctional material based triboelectric nanogenerator for highly efficient mechanical energy harvesting[J].Advanced Functional Materials, 2021, 31(28):2101829.
- [2]BAI S J, SONG M M, MA T F,et al. On factors of ions in seawater for CO2reduction[J].Applied Catalysis B:Environmental,2023, 323:122166.
- [3]LIU Z G, LI J Y, CHEN Z Y,et al. Photocatalytic conversion of carbon dioxide on triethanolamine:Unheeded catalytic performance of sacrificial agent[J].Applied Catalysis B:Environmental, 2023, 326:122338.
- [4]DONG J J, KONG Y, CAO H,et al. Visible-light deposition of CrOx cocatalyst on TiO2:Cr valence regulation for superior photocatalytic CO2reduction to CH4[J].Journal of Energy Chemistry, 2022, 64:103-112.
- [5]KANG X F, HE Z Z, WANG F,et al. Decrypting the controlled product selectivity over tunable Ni—Co bimetallic alloy for photoreduction CO2[J].Advanced Functional Materials, 2025, 35(16):2419802.
- [6]刘雪美,罗绣毓,王华.BiOBr/CN 2D/2D异质结高效光催化CO2还原[J].化学工业与工程,2024, 41(6):1-11.LIU X M, LUO X Y, WANG H. Preparation of BiOBr/CN heterojunctions and analysis of the performance of photocatalytic reduction of CO2[J].Chemical Industry and Engineering, 2024, 41(6):1-11.
- [7]SHEN C Y, MENG X Y, ZOU R,et al. Boosted sacrificial-agent-free selective photoreduction of CO2to CH3OH by rhenium atomically dispersed on indium oxide[J].Angewandte Chemie International Edition, 2024, 63(18):e202402369.
- [8]NEKOUEI F, POLLOCK C J, WANG T Y,et al. Exceptionally low-coordinated bismuth-oxygen vacancy defect clusters for generating black In2O3photocatalysts with superb CO2reduction performance[J].ACS Catalysis, 2025, 15(3):1431-1443.
- [9]ZHANG H G, YOHANNES A, ZHAO H,et al. Photocatalytic asymmetric C-C coupling for CO2reduction on dynamically reconstructed Ruδ+-O/Ru0-O sites[J].Nature Communications, 2025, 16(1):534.
- [10]BAI S, JIANG J, ZHANG Q,et al. Steering charge kinetics in photocatalysis:Intersection of materials syntheses, characterization techniques and theoretical simulations[J].Chemical Society Reviews, 2015, 44(10):2893-2939.
- [11]LAI K Z, SUN Y X, LI N,et al. Photocatalytic CO2-to-CH4conversion with ultrahigh selectivity of 95.93%on S-vacancy modulated spatial In2S3/In2O3heterojunction[J].Advanced Functional Materials, 2024, 34(49):2409031.
- [12]ZOU R, SHEN C Y, SUN K H,et al. CO2hydrogenation to methanol over the copper promoted In2O3catalyst[J].Journal of Energy Chemistry, 2024, 93:135-145.
- [13]YANG Y X, WU L L, YAO B Q,et al. Gallium cluster-promoted In2O3catalyst for CO2hydrogenation to methanol[J].ACS Catalysis, 2024, 14(18):13958-13972.
- [14]LI B, LIU X J, ZHU H W,et al. A review on Bi2WO6-based materials for photocatalytic CO2reduction[J].Small, 2024, 20(49):2406074.
- [15]XU Y, YU S S, REN T L,et al. A quaternary metal-metalloid-nonmetal electrocatalyst:B, P-co-doping into PdRu nanospine assemblies boosts the electrocatalytic capability toward formic acid oxidation[J].Journal of Materials Chemistry A, 2020, 8(5):2424-2429.
- [16]HUANG Q S, LI Q J, CHU C C,et al. Synergetic regulation of electronic structure of graphitic carbon nitride through phosphorus and carbon co-doping for enhanced photocatalytic CO2reduction[J].Chemical Engineering Journal, 2024, 482:149155.
- [17]JIANG L B, YANG J J, YUAN X Z,et al. Defect engineering in polymeric carbon nitride photocatalyst:Synthesis, properties and characterizations[J].Advances in Colloid and Interface Science, 2021, 296:102523.
- [18]HE Y X, YIN L, YUAN N N,et al. Adsorption and activation, active site and reaction pathway of photocatalytic CO2reduction:A review[J].Chemical Engineering Journal, 2024, 481:148754.
- [19]YU X Y, CHEN Y J, ZHANG Q Y,et al. Carbon and nitrogen co-doped In2O3porous nanosheets with oxygen vacancies for remarkable photocatalytic CO2conversion[J].Surfaces and Interfaces, 2023, 38:102789.
- [20]ZHU X W, YANG J M, ZHU X L,et al. Exploring deep effects of atomic vacancies on activating CO2photoreduction via rationally designing indium oxide photocatalysts[J].Chemical Engineering Journal, 2021, 422:129888.
- [21]YANG Y X, SHEN C Y, SUN K H,et al. Enhanced surface charge localization over nitrogen-doped In2O3for CO2hydrogenation to methanol with improved stability[J].ACS Catalysis, 2023, 13(9):6154-6168.
- [22]PAN Y X, YOU Y, XIN S,et al. Photocatalytic CO2reduction by carbon-coated indium-oxide nanobelts[J].Journal of the American Chemical Society, 2017, 139(11):4123-4129.
- [23]LIU M Q, JIAO Y Y, QIN J C,et al. Boron doped C3N4nanodots/nonmetal element(S, P, F, Br)doped C3N4nanosheets heterojunction with synergistic effect to boost the photocatalytic hydrogen production performance[J].Applied Surface Science, 2021, 541:148558.
- [24]LI X X, LIU X C, LIU C,et al. Co3O4/stainless steel catalyst with synergistic effect of oxygen vacancies and phosphorus doping for overall water splitting[J].Tungsten, 2023, 5(1):100-108.
- [25]SHI Y B, ZHAN G M, LI H,et al. Simultaneous manipulation of bulk excitons and surface defects for ultrastable and highly selective CO2photoreduction[J].Advanced Materials, 2021, 33(38):2100143.
- [26]WAN Z, MAO Q H, CHEN Q. Proton-dependent photocatalytic dehalogenation activities caused by oxygen vacancies of In2O3[J].Chemical Engineering Journal, 2021, 403:126389.
- [27]YU Z Z, YANG K, YU C L,et al. Steering unit cell dipole and internal electric field by highly dispersed Er atoms embedded into NiO for efficient CO2photoreduction[J].Advanced Functional Materials, 2022, 32(28):2111999.
- [28]JIA X Y, SUN K H, WANG J,et al. Selective hydrogenation of CO2to methanol over Ni/In2O3catalyst[J].Journal of Energy Chemistry, 2020, 50:409-415.
- [29]CHEN X, ZHANG W W, ZHANG L X,et al. Construction of porous tubular In2S3@In2O3with plasma treatment-derived oxygen vacancies for efficient photocatalytic H2O2production in pure water via two-electron reduction[J].ACS Applied Materials&Interfaces,2021, 13(22):25868-25878.
- [30]张丹,赵振涛,王宁,等.ZSM-5分子筛硅铝比对TiO2/ZSM-5光催化性能的影响[J].高校化学工程学报,2023, 37(2):240-248.ZHANG D, ZHAO Z T, WANG N,et al. Effects of SiO2/Al2O3ratio of ZSM-5 zeolite on photocatalytic performance of TiO2/ZSM-5[J].Journal of Chemical Engineering of Chinese Universities, 2023, 37(2):240-248.
- [31]WANG Q, CHEN Y J, LIU X,et al. Sulfur doped In2O3-CeO2hollow hexagonal prisms with carbon coating for efficient photocatalytic CO2reduction[J].Chemical Engineering Journal, 2021, 421:129968.
- [32]LIU C W, HAO D, YE J,et al. Knowledge-driven design and lab-based evaluation of B-doped TiO2photocatalysts for ammonia synthesis[J].Advanced Energy Materials, 2023, 13(8):2204126.
- [33]HOJAMBERDIEV M, CAI Y F, VEQUIZO J J M,et al. Binary flux-promoted formation of trigonal ZnIn2S4layered crystals using ZnScontaining industrial waste and their photocatalytic performance for H2production[J].Green Chemistry, 2018, 20(16):3845-3856.
- [34]WU C, SONG K, ZHANG X T,et al. Highly efficient photocatalytic CO2-to-CO on Ni-based cationic polymer with TiO2-assisted exfoliation and stabilization[J].Angewandte Chemie International Edition, 2025, 64(13):e202423200.
- [35]FENG C Y, HU M, ZUO S W,et al. Ru-OVsite-mediated product selectivity switch for overall photocatalytic CO2reduction[J].Advanced Materials, 2025, 37(5):2411813.
- [36]石雄飞,高燊原,王晓钟,等.无掺杂g-C3N4促进光催化甲苯氧化[J].高校化学工程学报,2025, 39(1):85-94.SHI X F, GAO S Y, WANG X Z,et al. Undoped g-C3N4boosted photocatalytic oxidation of toluene[J].Journal of Chemical Engineering of Chinese Universities, 2025, 39(1):85-94.
- [37]ZHAO D M, DONG C L, WANG B,et al. Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution[J].Advanced Materials, 2019, 31(43):1903545.
- [38]JI J X, LI R R, ZHANG H,et al. Highly selective photocatalytic reduction of CO2to ethane over Au-O-Ce sites at micro-interface[J].Applied Catalysis B:Environmental, 2023, 321:122020.
- [39]HUANG Q J, LIN J, YANG D S,et al. Synergism of the plasmonic effect and schottky junction to effectively facilitate photocatalytic CO2reduction of Bi4O5I2@Cu[J].ACS Sustainable Chemistry&Engineering, 2023, 11(48):17168-17178.
- [40]LU S Y, YANG H Y, ZHOU Z X,et al. Effect of In2O3particle size on CO2hydrogenation to lower olefins over bifunctional catalysts[J].Chinese Journal of Catalysis, 2021, 42(11):2038-2048.
- [41]SUN L, ZHANG Z Q, BIAN J,et al. A Z-scheme heterojunctional photocatalyst engineered with spatially separated dual redox sites for selective CO2reduction with water:Insight by in situμs-transient absorption spectra[J].Advanced Materials, 2023, 35(21):2300064.
- [42]WANG G, CHEN Z, WANG T,et al. P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2reduction to hydrocarbon fuels with high C2H6evolution[J].Angewandte Chemie International Edition, 2022, 61(40):e202210789.
- [43]MAO J, LIU H, CUI X J,et al. Direct conversion of methane with O2at room temperature over edge-rich MoS2[J].Nature Catalysis,2023, 6(11):1052-1061.
- [44]ZHANG Q, WANG S, SHI X R,et al. Conversion of CO2to higher alcohols on K-CuZnAl/Zr-CuFe composite[J].Applied Catalysis B:Environment and Energy, 2024, 346:123748.